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We present  high-resolution  measurements of the isothermal susceptibility of pure  3He  near the 
liquid-gas critical point. The PVT Measurements  were  performed in the single phase region along 
the critical isochore over the reduced temperature range 3 x lod5 < T/Tc - 1 < 1.5 x 10". The 
crossover  behavior of the susceptibility was  analyzed  using a field theoretical renormalization group 
calculation based on the 44 model. A similar  crossover  analysis  was  performed  on  previously  obtained 
Xe susceptibility measurements.  Comparison of the effective susceptibility exponent for those two 
enids shows theoretically predicted universal  crossover  behavior. 

PACS number(s):  44.10.+il 05.70.Jk, 64.60.-i,  66.10.Cb 

It is  well  known that  thermodynamic  quantities  exhibit 
singularities  asymptotically close to  the critical  point. 
The power  law behavior of these  singularities,  charac- 
terized by critical  exponents  and the concept of univer- 
sality  and scaling,  have  been successfully described  by 
renormalization-group  (RG)  theory [ 11. Earlier  experi- 
mental  studies of critical  phenomena were mostly dedi- 
cated to  the quest of true asymptotic behavior.  Recently 
there  has been  a  renewed  interest  in understanding  crit- 
ical crossover phenomena  from  asymptotic  to classical 
critical  behavior (21. Away from the  asymptotic region, 
thermodynamic  quantities of real  physical  systems devi- 
ate from  simple power  law behavior. However, RG  theory 
can  still  provide  insight  in  understanding  correction-to- 
scaling  behavior as long as the correlation  length  is com- 
parable  or  larger  than  the  characteristic  length scale of a 
system. 

In a fluid system,  the  isothermal  susceptibility  is de- 
fined as XT E p ( a ~ / d P ) ~ ,  where p is the fluid density 
and P is the pressure. In  the single-phase region, the nor- 
malized susceptibility, x$ = GXT is conveniently  char- 
acterized by the Wegner  series  expansion [3] 

P C  

x;. = r,+t-y(l+ r:tA + r;t2A + alt + ...), (1) 

where t = (T - T,)/T, is the reduced temperature  and 
r;, r:, I?;, and al are non-universal  system dependent 
amplitudes.  Theoretical values  for the critical exponents 
[4] are y = 1.239 f 0.002 and A = 0.504 f 0.008. Ex- 
perimental data in the crossover  region can  be  char- 
acterized by an effective susceptibility  exponent yer = 
-dln  XT/dln It/. In a  recent paper Anisimov et  al. [5] in- 
vestigated  the  critical crossover behavior of several fluid 
systems by  using a phenomenological crossover model of 

the susceptibility  based  upon a RG  matching  technique 
[6]. They considered the effective exponent yeff and  found 
that for T -+ T,, yen can  approach  the  asymptotic value 
y either  from below or from  above. This implies that  the 
Wegner amplitude r:, which describes the leading cor- 
rection, is either positive or negative  depending  on the 
particular fluid system. 

In this  letter, we present  high  resolution  measurements 
of the  3He  susceptibility  near the liquid-gas  critical point. 
The  data  are  compared  with  the RG theory for the 44 
model of Schloms and  Dohm [7]. The Wegner correc- 
tions  are included to all orders  in  the crossover region by 
numerically integrating  the RG equations to  determine 
the susceptibility and  the effective exponent. We have 
also  compared the crossover behavior of 3He to a similar 
analysis of susceptibility  measurements  in Xe [S] which 
is a room temperature classical fluid. 

The experimental cell used to measure the susceptibil- 
ity was made of Oxygen Free High Conductivity  Copper. 
The  sample was contained  in  a flat pancake cell 0.05 cm 
high and 11 cm in diameter.  The small cell height was 
chosen to  minimize the effect of gravity. The cell was 
mounted  on a thermal  stage  that was surrounded by a 
radiation  shield  stage. High purity  3He (< 0.2 ppm  4He) 
was  used for the experiment. A fill line was connected 
to an in-situ  charcoal adsorption  pump. A Straty-Adams 
type  capacitive  pressure  gauge was mounted in the mid- 
dle of the cell to directly  measure  the  pressure of the 
fluid. A density sensor consisting of a capacitor  with a 
50 pm  gap was  also  located in the middle of the cell. The 
density of the fluid was  determined from the measured 
dielectric constant using the Clausius-Mossotti  relation. 
Both a conventional  Germanium  resistance  thermome- 
ter  and a GdC13  high resolution  paramagnetic  suscepti- 
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bility thermometer [9] measured the  temperature of the 
cell  wall.  An advantage of this cell design is the  ability 
to perform other  thermodynamic measurements like the 
specific heat as well as PVT measurement. 

The cell  was also  equipped  with three equally-spaced 
leveling capacitor  sensors. Before performing the PVT 
measurements, the cell was leveled by monitoring the av- 
erage  density of the fluid at  the leveling capacitors.  Dur- 
ing the experiment the leveling was maintained to  bet- 
ter  than 0.01 degree. After the leveling was completed, 
the susceptibility of the sample was measured  along con- 
stant  temperature  isotherms using a conventional PVT 
measurement  technique [lo]. For these measurements, a 
low temperature valve was opened and  the density of the 
sample was decreased  linearly by controlling the temper- 
ature of the in-situ  charcoal  adsorption  pump. 
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FIG. 1. A typical PVT run at t = 1.31 x The solid 
line shows the pressure P as a function of the density differ- 
ence Ap. The susceptibility x > ,  obtained from the slope of 
the P - p curve, is shown as open  circles. Data were taken 
while reducing the density of the sample. 

Figure 1 shows a typical  isotherm  run at t = 1.31 x 
that covered the  density  range -0.3 < Ap = p / p c  - 1 < 
0.3. The solid line shows the pressure P as a function 
of the density difference Ap. Relatively slow sweep rates 
of 5-10 hours  per  isotherm were chosen to minimize the 
density  inhomogeniety in the sample. Temperature  sta- 
bility of the sample  during  the  ramping was typically  bet- 
ter  than 3 pK (rms).  The susceptibility was determined 
from the slope of the measured  isotherm (solid line) and 
is represented in Fig. 1 by the  open circles. Although 
the susceptibility was measured  throughout  the  critical 
region, this  letter will only report on  measurements  along 
the  critical isochore. Gravity  induced  a  vertical  density 
inhomogeniety in the cell due  to  the  strong divergence of 

the susceptibility. We have estimated the gravity effect 
within the cell and density  sensor using a cubic  model 
equation of state [ll]. These  calculations  predict a 1% 
correction  in the susceptibility due  to  Earth's  gravity 
at I! = 5.5 x for the density  capacitor  gap  and 
t = 2.5 x for the cell height.  Gravity  corrections 
close to  the transition  introduce an uncertainty in the 
determination of the critical temperature.  In  this  data 
analysis, the different choices of the critical  temperature 
within the experimental  uncertainty  resulted  in  the ex- 
ponent -y being between 1.18 to  1.24. The  data were an- 
alyzed with  current  theoretical values of the exponents, 
-y and A [4], in  order to test universal crossover behavior 
near the liquid-gas critical  point. 

Isothermal  susceptibility data along the critical iso- 
chore are plotted as a function of reduced temperature 
in Fig. 2. The leading power law dependence was elimi- 
nated by multiplying the susceptibility by tr. The exper- 
imental data are shown as open circles. The  asymptotic 
critical  amplitude, I?: is obtained  in the limit of t + 0 
(dashed line). The  curvature in the  data indicates the 
crossover behavior. 
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FIG. 2. The susceptibility  multiplied by t7 ,  plotted against 
the logarithm (to base 10) of the reduced temperature. The 
solid  curve  is the best RG fit, and the open  circles are the 
data points. The details of  RG fit is discussed in the text. 

For comparison we numerically calculated the suscepti- 
bility by applying  the RG theory for the 94 model devel- 
oped by Schloms and Dohm [7] to  the O(1) universality 
class. We find the susceptibility 

depends  on  the RG  flow parameter 1 ,  that is related to 
the reduced temperature t by 

t = to l l / u  exp[-~,( l ) ]  . (3) 
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The  renormalization  factors  on  the  right  hand  side of Eqs. 
(2) and (3) are  represented by the  exponential  functions 
with the integrals 

J'r(1) = ,[cI.(u(l')) - Cr(u*)l 9 I I  (4) 

Fd1) = 1 1;-[cm(" (" ) )  - Cdu*)I. (5) 
' dl' 

0 

Here u(l)  is the  renormalized  coupling  parameter of the 
44 model that satisfies the differential  equation 

d 
dl 

I " u ( 1 )  = P(u(1)) . (6) 

The RG functions p(u) ,  (v(u), and <d(u) have  been de- 
termined by Schloms and Dohm [7] via Borel resumma- 
tion of high-order  perturbation series. For the  dimension 
d = 3 and a n = 1 component  order-parameter field +(r) 
they become 

P(u) = -u + 36u2(1 + aru)/(l+  asu) , (7) 

cr(u) = 1221 - 1 2 0 ~ ~  + a1u3 - agu , (8) 4 

C ( u )  = -24u2 + a3u3 , (9) 

where a1 = 3075, a2 = 30390, a3 = 37.5, a4 = 14.10, and 
a5 = 31.85. The  amplitude function !+(a) in (2) was cal- 
culated by Krause  et  al. [12] using a Borel resummation 
technique. The result is 

92 
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f+(u) = 1 - -u2(1 + b,u) , (10) 

where b, = 9.68. The susceptibility x?(t) was calculated 
by evaluating  Eqs. (2)-(10) numerically. First,  Eq. (6) 
was solved together  with  Eq. (7) and  the initial  condition 
u(Z = 1) = u to  obtain  the  renormalized  coupling u(1) as 
a function of the RG flow parameter 1 .  The  renormalized 
coupling  approaches the fixed point value u* = 0.0405 [7] 
in the limit 1 + 0. The functions & ( I )  and F4(1) were 
then  obtained by evaluating  the integrals  in  Eqs. (4) and 
(5) together  with  Eqs.  (8)  and (9). x?(l)  and t(1) are 
determined from (2),  (3), and (10). The susceptibility 
x? = x?( t )  was then  obtained by eliminating 1 .  

The theoretical  susceptibility x?(t)  contains three non- 
universal parameters, X O ,  to ,  and  the initial value u. Only 
two of them, say x0  and t o ,  are  independent, while the 
third  one u is irrelevant  because the RG  flow parame- 
ter 1 can  be  eliminated. The theoretical  susceptibility 
x>( t )  was fitted  to the  experimental data by adjusting 
the two  nonuniversal  amplitudes x 0  and u while t o  is 
kept, constant.  The best  result for x 0  = 0.254, and u/u* 
= 0.34 is shown by the solid line  in Fig. 2. The  theoret- 
ical curve  agrees very well with  the  experimental data. 

We find that  the Wegner corrections to  the  asymptotic 
power law, which are  included in the theory, are essential 
for the  explanation of the  experimental  data.  The dif- 
ference between  the solid and  dashed lines is due  to  the 
Wegner corrections. The  theoretical susceptibility x + ( t )  
can  be  expanded in the series given  in Eq. (l), where the 
amplitudes I';, I?:, etc. are expressed in terms of the 
two  nonuniversal fit parameters to  and X O .  From the fit 
in  Fig. 2 we find I'; = 0.152 and I?: = 0.93 for 3He. 

The effective exponent ^/eff obtained from the 3He  sus- 
ceptibility  measurements is shown by the solid  line  in 
Fig. 3. The effective exponent is monotonically de- 
creasing  in the crossover region, which implies that  the 
Wegner amplitude I't is  positive, or equivalently that 
u/u* < 1. This analysis indicates  that  the effective 
susceptibility  exponent,  ye^, changes  monotonically  from 
the  asymptotic critical value (~=1.239)  close to  the  tran- 
sition to  the classical  value farther away. The crossover 
behavior is not  completed  before leaving the critical re- 
gion. 
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FIG. 3. reff vs normalized reduced temperature. -yea is the 
slope of log(xT) vs log(t) plot. The  reduced temperature is 
scaled by a arbitrary factor G. 

Guttinger  and Cannel1 [8] have  measured  the suscepti- 
bility  near the liquid gas critical  point in  Xe. Their  data 
can also be  fitted with the RG theoretical susceptibility. 
For comparison we have  determined  the Xe effective ex- 
ponent /̂err which  is shown  in  Fig. 3 by the  dashed line. 
In  this  case a slightly  larger  Wegner amplitude I'f = 1.0 
is obtained. In Fig. 3 the  reduced  temperature is scaled 
by a factor G. By adjusting G = 0.86, the ^leg for Xe was 
collapsed onto  the 3He  curve. The theoretically  expected 
scale  factor G between Xe and 3He  can be determined 
from the  expression 
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using the leading Wegner amplitudes. By inserting  the 
above Wegner amplitudes we obtain G = 0.86 in agree 
ment  with  experiment. The experimental data  are ac- 
tually  consistent  with  this  theoretical scale factor well 
beyond the reduced temperature region associated  with 
the leading Wegner amplitude.  This universal crossover 
behavior is predicted by the 44 crossover  model and  has 
also been recently demonstrated by numerical  simulation 
of spin  systems [13]. We are  unaware of any  previous ex- 
perimental  demonstration of the existence of a universal 
crossover curve in simple fluid systems. 

There should be a relationship  between  scale  factor G 
and  the  Ginzberg  number NG, that provides a quantita- 
tive  means of locating the  boundary between the region  in 
which mean field theory is valid and  the regime in which 
fluctuations  renormalize the critical  behavior of the sys- 
tem. The smaller the  Ginzburg  number,  the closer one 
must  approach to the critical  point  before  fluctuations 
significantly modify the thermodynamics of the system. 
The  Ginzburg  number itself is a nonuniversal amplitude 
that  can  not  be  calculated by the RG  theory. 

We interpret  the  scale  factor G as the  ratio of the 
Ginzberg  numbers  for  Xe  and  3He, G = N G ~ , x ~ / N G ~ , s H ~ .  
In Ref. [13], it is argued  that  the  Ginzburg  number, 
Nci ,  depends  on the effective range R of the interac- 
tion  via the relationship N G ~  - R-6 in d = 3 dimen- 
sions. This implies N G , , x ~ / N G ~ , ~ H ~  = R6(3He)/R6(Xe) - <o(3He)/Jo(Xe) = 6.57, where Jo is the  correlation 
length  amplitude. The difference between this  ratio  and 
the result for the  scale  factor G obtained in this  analysis 
cannot  be  accounted for by either  random or systematic 
experimental  error.  This  suggests that more than one 
property of the  system  controls  the  factor N G ~ .  We  be- 
lieve that  other microscopic  details need to  be included 
in defining the  Ginsburg  number.  This conclusion is con- 
sistent  with  the  latest  phenomenological crossover model 
and numerical studies of three dimensional  Ising  model 

In the case of 3He, the microscopic detail  is  governed 
by quantum effects, which are  not  taken  into  account 
in the  standard  Ginzburg-Landau Wilson formulation of 
the effective Hamiltonian. We expect  quantum effects to 
become important when the  correlation  length is com- 
parable to  or smaller than  the  de Broglie wavelength. 
The  estimated  correlation  length of 3He is approximately 
equal to  the de  Broglie  wavelength  near t N 0.4. Thus, 
we do  not  expect  quantum effects will significantly af- 
fect measurements close to  the  transition. At this  time, 
calculations of the precise influence of quantum effects 
on  crossover behavior  have  not  been  performed for this 
system. 

The  quality of the fit of the R.G-based  crossover  form 
to  the present data over more than four decades in re- 
duced temperature is encouraging. However, it should 
be noted that fits of comparable  quality  are  obtained us- 
ing both  an  alternative crossover  form  based  on  work of 
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Nicoll and Albright [15,16] and  the  asymptotic power-law 
behavior modified by the  first Wegner  correction, i.e. Eq. 
(1) with  no coefficients beyond I?: retained.  Data  capa- 
ble  of  distinguishing  between the various candidates for 
the crossover to  asymptotic  critical behavior  should be 
available  once  measurements  have  been  performed closer 
to  the  transition in a microgravity  environment [17]. 
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